In early times, astronomy only comprised the observation and predictions of the motions of objects visible to the naked eye. In some locations, such as Stonehenge, early cultures assembled massive artifacts that likely had some astronomical purpose. In addition to their ceremonial uses, these observatories could be employed to determine the seasons, an important factor in knowing when to plant crops, as well as in understanding the length of the year.
Before tools such as the telescope were invented early study of the stars had to be conducted from the only vantage points available, namely tall buildings and high ground using the bare eye.
As civilizations developed, most notably in Mesopotamia, Greece, Egypt, Persia, Maya, India, China, Nubia and the Islamic world, astronomical observatories were assembled, and ideas on the nature of the universe began to be explored. Most of early astronomy actually consisted of mapping the positions of the stars and planets, a science now referred to as astrometry. From these observations, early ideas about the motions of the planets were formed, and the nature of the Sun, Moon and the Earth in the universe were explored philosophically. The Earth was believed to be the center of the universe with the Sun, the Moon and the stars rotating around it. This is known as the geocentric model of the universe.
A few notable astronomical discoveries were made prior to the application of the telescope. For example, the obliquity of the ecliptic was estimated as early as 1000 BC by the Chinese. The Chaldeans discovered that lunar eclipses recurred in a repeating cycle known as a saros.In the 2nd century BC, the size and distance of the Moon were estimated by Hipparchus.
During the Middle Ages, observational astronomy was mostly stagnant in medieval Europe, at least until the 13th century. However, observational astronomy flourished in the Islamic world and other parts of the world. Some of the prominent Arab astronomers who made significant contributions to the science were Al-Battani and Thebit. Astronomers during that time introduced many Arabic names that are now used for individual stars.It is also believed that the ruins at Great Zimbabwe and Timbuktu may have housed an astronomy observatory. Europeans had previously believed that there had been no astronomical observation in pre-colonial Middle Ages sub-Saharan Africa but modern discoveries show otherwise.
During the Renaissance, Nicolaus Copernicus proposed a heliocentric model of the solar system. His work was defended, expanded upon, and corrected by Galileo Galilei and Johannes Kepler. Galileo innovated by using telescopes to enhance his observations.
Kepler was the first to devise a system that described correctly the details of the motion of the planets with the Sun at the center. However, Kepler did not succeed in formulating a theory behind the laws he wrote down. It was left to Newton’s invention of celestial dynamics and his law of gravitation to finally explain the motions of the planets. Newton also developed the reflecting telescope.
Further discoveries paralleled the improvements in the size and quality of the telescope. More extensive star catalogues were produced by Lacaille. The astronomer William Herschel made a detailed catalog of nebulosity and clusters, and in 1781 discovered the planet Uranus, the first new planet found. The distance to a star was first announced in 1838 when the parallax of 61 Cygni was measured by Friedrich Bessel.
During the nineteenth century, attention to the three body problem by Euler, Clairaut, and D’Alembert led to more accurate predictions about the motions of the Moon and planets. This work was further refined by Lagrange and Laplace, allowing the masses of the planets and moons to be estimated from their perturbations.
Significant advances in astronomy came about with the introduction of new technology, including the spectroscope and photography. Fraunhofer discovered about 600 bands in the spectrum of the Sun in 1814-15, which, in 1859, Kirchhoff ascribed to the presence of different elements. Stars were proven to be similar to the Earth’s own Sun, but with a wide range of temperatures, masses, and sizes.
The existence of the Earth’s galaxy, the Milky Way, as a separate group of stars, was only proved in the 20th century, along with the existence of “external” galaxies, and soon after, the expansion of the universe, seen in the recession of most galaxies from us. Modern astronomy has also discovered many exotic objects such as quasars, pulsars, blazars, and radio galaxies, and has used these observations to develop physical theories which describe some of these objects in terms of equally exotic objects such as black holes and neutron stars. Physical cosmology made huge advances during the 20th century, with the model of the Big Bang heavily supported by the evidence provided by astronomy and physics, such as the cosmic microwave background radiation, Hubble’s law, and cosmological abundances of elements